Thursday 24 November 2022

Acanthaster benziei: A new species of Crown-of-thorns Starfish from the Red Sea.

Crown-of-thorns Starfish, Acanthaster spp., are highly distinctive Starfish found across the tropical Indo-Pacific region from the east coast of Africa to the west coast of Mexico, which get their popular name from the covering of long, venomous spines found in most species. They are typically corallivorous, feeding on Coral Polyps by extruding their stomachs and digesting them externally. Notably, Crown-of-thorns Starfish can undergo sudden rapid population increases, known as outbreaks, which can lead to large areas of Coral Reefs being denuded of their living Polyps, something of great concern to conservationists at a time when Coral Reefs are facing a range of other threats, which has led to them being one of the most extensively studied groups of Marine Invertebrates.

Crown-of-thorns Starfish were first described by the German naturalist Georg Eberhard Rumphius in 1705, and given their own generic name, Acanthaster, by the French palaeontologist François Louis Paul Gervais  in 1841. For a long while, only two species were described within the genus, Acanthaster planci, the typical, long-spined, venomous, corallovorous form, and Acanthaster brevispinus, a shorter-spined, non-venomous form, which does not feed on Corals. However, genetic studies carried out within the past three decades have shown that Acanthaster planci is in fact a species cluster, made up of a number of physically very similar species (cryptospecies), which are nevertheless genetically distinct, which often appear to have diverged from one-another a long time ago. 

Based upon this, it was suggested that the original species should be split into four different species, each inhabiting a different geographical area; the Pacific, the Southern Indian Ocean, the Northern Indian Ocean and the Red Sea, which each of these species probably needing further division into several subspecies. Subsequent studies have indeed confirmed that the Pacific, North Indian Ocean, and South Indian Ocean populations are in fact separate species, although genetic material from the Red Sea population has not, until now, been available.

In a paper published in the journal Zootaxa on 17 November 2022, Gert Wörheide of the Department of Earth and Environmental Sciences Palaeontology and Geobiology, and the GeoBio-Center at Ludwig-Maximilians-Universität München, and the Bavarian State Collection of Palaeontology and Geology, Emilie Kaltenbacher and Zara-Louise Cowan, also of the Department of Earth and Environmental Sciences Palaeontology and Geobiology at Ludwig-Maximilians-Universität München, and Gerhard Haszprunar, also of the GeoBio-Center at Ludwig-Maximilians-Universität München, and of the Bavarian Zoological State Collections, describe the Red Sea population of Crown-of-thorns Starfish as a new population.

The new species is named Acanthaster benziei in honour of marine biologist John Benzie, for his extensive work on Crown-of-thorns Starfish. The description is based upon four specimens collected from species within the territorial waters of Saudi Arabia by  Sara Campana and OliverVoigt in 2017.

Typical colouration of Acanthaster benziei. (A) GW4081 (Paratype, hiding during the day under a crevice), Al-Lith, Saudi Arabia, (B)–(D) Thuwal Reefs, Saudi Arabia. Approximate diameter of specimens is 25–30 cm. Oliver Voigt & Gert Wörheide in Wörheide (2022).

Acanthaster benziei is a large Starfish with a convex disk and 11-14 arms (the range for the genus being 10-25), of uneven lengths, and tapering to a point. Each arm has two rows of ambulacral tube feet, which have flattened tips and lack suckers. The central disk of the species is 28-65 mm across, with an aboral (upper surface) covered in papulae (pimples) arranged in an apparently random manner. Both surfaces are covered in calcareous ossicles (plates) and spines. These Starfish are grey-green to grey-purple in colour, although the aboral spines are orange or red. The papulae on the aboral surface of the central disk can form darker patterns, giving this surface a 'bulls-eye' appearance.

See also...

Follow Sciency Thoughts on Facebook.

Follow Sciency Thoughts on Twitter.