Showing posts with label LkCa 15. Show all posts
Showing posts with label LkCa 15. Show all posts

Monday, 5 September 2016

Imaging the inner disk of LkCa 15.

LkCa 15 is a young (2-5 million-year-old) K5-type orange dwarf star, roughly 547 light years from Earth in the Taurus-Auriga star-forming region in the constellation of Taurus. It has approximately the same mass as the Sun but only about 74% of its luminosity, new material is still accreting onto the star at a rate of about one Earth mass every 23 years. The system has a one of the best known transition disks (a structure on the way from being a protoplanetary disk, a dense structure from which planets are thought to form, to a debris disk, a relict of earlier planet-formation, such as the Main Asteroid Belt and Kuiper Belt in our Solar System), which comprises an inner disk close to the star, a gap with three candidate planets and an outer disk which begins at about 50 AU from the star (i.e. 50 times as far from the star as the Earth is from the Sun). This is recognizably similar to our Solar System, with an outer disk in a similar position to our Kuiper Belt, three large candidate planets in a similar position to the four giant planets of our Solar System (Jupiter, Saturn, Uranus and Neptune) and an inner disk in the region occupied by our inner planets (Mercury, Venus, Earth and Mars), however while the outer disk of LkCa 15 has been well studied and the planets imaged several times, resolving the inner disk has proven problematic.

In a paper published on the arXiv database at Cornell University Library on 2 September 2016, a team of scientists led by Christian Thalmann of the Institute for Astronomy at ETH Zurich describe the results of a new study of the LkCa 15 system using the SPHERE (Spectro-Polarimetric High-contrast Exoplanet REsearch) instrument on the European Southern Observatory’s Very Large Telescope, and discuss the implications of this study.

Thalmann et al. made two rounds of observations with the instrument, which makes long exposure still images, the first making images with an exposure time of 32 seconds, using a coronagraph to block out the light from the star (the DEEP images), and the second making images with an exposure time of 0.85 seconds and not using a coronagraph (the FAST images.

The DEEP images were able to resolve both disks of LkCa 15 and the gap between them in much better detail than has previously been possible. These show the inner disk to be a roughly elliptical structure, comparable in shape and orientation to the outer disk, but approximately half the size. The FAST images show similar structures to the DEEP images, though at a lower resolution.

SPHERE IRDIS J-band imaging polarimetry of LkCa 15. Each panel shows the DEEP and FAST images side-by-side at the same scale, with insets showing the shape of the PSF core (a) Polarized flux of Deep at linear stretch (arb. units). The inner disk saturates the color scale. (b) The corresponding S/N map at a stretch of [-10σ , 10σ ]. (c) Polarized flux of DEEP after scaling with an inclined r² map to render the faint disk structures visible (arb. units). (d-f) The same three images for FAST. While overall sensitivity is lower in these data, they a fford an unobstructed view onto the inner disk. In all panels, the star’s location is marked with a white disk. The black wedges on the color scales mark the zero level. Thalmann et al. (2016).


The two arms of the inner disk appear to be asymmetrical, with the western arm trending outward and the eastward arm curling inward, and there appears to be a local brightening along the far side of the minor axis. There is also an apparent darkening on the inner part of the disk, possibly indicating a gap within it, though Thalmann et al. are cautious of over-interpreting these results, which are at the very limit of the telescope's operating capacity. The three candidate planets were also resolved, though again Thalmann et al. advise caution, but in this case they do feel the evidence for the best understood planet (LkCa 15b), is particularly strong, and note that such a planet could cause some of the apparent structures seen in the inner disk.

Thalmann et al. resolve the outer disk as being tilted at an angle of 60° seen by an Earth-based observer. They could not resolve any spirals or structural asymmetries within this outer disk, but did note four dimmed radial lines at 50° , 135° , 200°and 325°. The nature of these lines is unclear, though they could be shadows cast by inner disk regions or magnetospheric accretion columns.

Analysis of the outer disk structure of LkCa 15. (a) Ellipse fits to the maximum gradient (solid blue line) and the flux minimum (dotted blue line) in the r²-scaled DEEP image. (b) Comparison of the best-fit gap edge in J-band (blue solid line) with those in RI-band (red long-dashed line) and sub-millimeter interferometry (green short-dashed line). (c) Full-intensity KLIP image (5 subtracted modes) of the Full data in the K1K2 filter for comparison. The gap edge derived from the DEEP image coincides very well with the edge of the bright crescent in the KLIP image. (d) The image in panel (a) at a harder stretch, emphasizing the surface brightness variations in the outer disk. Four position angles with reduced brightness are marked, possibly indicating transient shadowing from the inner disk. Thalmann et al. (2016).


See also...

Transition disks around LkCa 15.             Planets are thought to form in protoplanetary disks, which is to say disks of gas and dust around young stars. However not all the material in a protoplanetary disk is likely to be used up in the formation of planets, leaving one or more debris disks, such as the Main Asteroid Belt and Kuiper Belt in our own Solar System. These debris disks typically contain rocky and icy bodies, but not...
Searching for circumplanetary disks around LkCa 15.                                                        Just as young stars are typically surrounded by a disk of material that is accreting onto the star as well as potentially coalescing to form planets (circumstellar or protoplanetary disks), comets and other bodies; young planets, particularly very large ones, ought in theory to be surrounded by smaller disks of material, accreting onto the planet and potentially coalescing to form moons....
Follow Sciency Thoughts on Facebook.

Friday, 2 May 2014

Searching for circumplanetary disks around LkCa 15.

Just as young stars are typically surrounded by a disk of material that is accreting onto the star as well as potentially coalescing to form planets (circumstellar or protoplanetary disks), comets and other bodies; young planets, particularly very large ones, ought in theory to be surrounded by smaller disks of material, accreting onto the planet and potentially coalescing to form moons. Such disks should potentially be detectable, although as these disks are smaller and less massive than circumstellar disks, so they will be correspondingly hard to observe.

In a paper published on the arXiv database at Cornell University Library on 22 April 2014, a team of scientists led by Andrea Isella of the Department of Astronomy at the California Institute of Technology, describe the results of a search for circumplanetary disks around the young star LkCa 15, using the National Radio Astronomy Observatory's Karl G. Jansky Very Large Array.

LkCa 15 is a young (2-5 million-year-old) K5-type orange dwarf star, roughly 547 light years from Earth in the constellation of Taurus. It has approximately the same mass as the Sun but only about 74% of its luminosity, new material is still accreting onto the star at a rate of about one Earth mass every 23 years. The system has an observed circumstellar disk with an inner margin about 45 AU from the star (i.e. about 45 times the average distance at which the Earth orbits the Sun), the area starward of this inner edge being thought to have coalesced into a number of planetary bodies. The material beyond 45 AU is unlikely to go on to form planets as it is too diffuse and scattered (hence circumstellar disk rather than protoplanetary disk), but may form comets or similar bodies. A single potential planet has been detected in the LkCa 15 system, LkCa 15b; if this observation is accurate the planet has a mass 6-10 times that of Jupiter and orbits at a distance of 16 AU. Such a large, young planet, or any other similar body in the system, would be likely to have a large circumplanetary disk, which would be amenable to detection.

Isella et al. were able to detect an inner ring of material about the LkCa 15, apparently made up of about 3 Earth masses of dust and fine grains within a few AU of the star. However they were not able to detect any circuplanetary disk about the candidate planet LkCa 15b, or any other body in the system. This non-detection does not mean such disks do not exist, but rather that if they do then they were below the limits for detection by the array. One or more disks comprising about 10% of the mass of Jupiter within 1 AU of a planet could still potentially exist in the LkCa 15 system, although this would imply that, despite the young age of the system and any potential planets, that the majority of planetary accretion has already taken place.

(Top) 1.6” x 1.6” map of the LkCa 15's continuum disk emission observed at the wavelength of 7 mm obtained by reducing the weights of the complex visibilities measured on the longest baselines to increase the sensitivity of the extended structures. The rms noise level in the map is 6.1 µJy beam-1 . The FWHM of the synthesized beam is 0.15”. (Center) Map of the 7 mm emission obtained by adopting natural weighting of the complex visibilities to maximize the angular resolution and the point source sensitivity. The rms noise level is 3.6 µJy beam-1 and the FWHM of the synthesized beam is 0.07”. The green ellipse corresponds to an orbital radius of 45 AU and traces the outer edge of the dust depleted cavity as measured from the observations at 1.3 mm. (Bottom) Map of the innermost 45 AU disk region. Contours are plotted at 2 and 4x the noise level. The white triangle shows the expected position of LkCa 15 b assuming that the star is located at the peak of the 7 mm emission. Isella et al. (2014).

See also…























Follow Sciency Thoughts on Facebook.